Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guili Jiao, Xiaoyan Li,* Ruixia Cao and Min Li

School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China

Correspondence e-mail: xli63@sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.125$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6,6'-Dihydroxy-5,5'-dimethoxy-3,3'-methylenedibenzaldehyde

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$, the asymmetric unit contains one half-molecule. A twofold rotation axis passes through the C atom linking the two rings. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds seem to be effective in stabilizing the molecular structure.

Comment

Dinuclear ligands are useful in the preparation of dinuclear complexes which are excellent asymmetric catalysts owing to their large molecular weights (Wei \& Atwood, 1997; Janssen et al., 1997) and several active sites.

Received 2 November 2005 Accepted 18 November 2005 Online 26 November 2005

(I)

The title compound, (I), was synthesized according to reported methods with little modification (Marvel \& Tarköy, 1957; Sun \& Tang, 2004). In our case, it was synthesized according to the reported methods with little modification.

The asymmetric unit contains only one half-molecule. A twofold rotation axis passes through atom C1. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 1 and Table 1) seem to be effective in stabilizing the molecular structure.

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular O-H. $\cdots \mathrm{O}$ hydrogen bonds. [Symmetry code: (A) $-x, y,-z+\frac{3}{2}$.]

Experimental

The title compound was synthesized from the reaction of 3-methoxysalicylaldehyde $(15.2 \mathrm{~g}, 100 \mathrm{mmol})$ and paraformaldehyde $(4.5 \mathrm{~g}$, 50 mmol) in glacial acetic acid (18 ml) for 24 h at $363-368 \mathrm{~K}$ with concentrated sulfuric acid $(0.5 \mathrm{ml})$ as catalyst. The compound was separated by column chromatography on silica-gel eluted with ethyl acetate-hexane (4:1). Pale yellow crystals suitable for X-ray analysis were obtained by crystallization at 298 K from ethyl acetate (yield 3.7 g, 23\%, m.p. 414-415K).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$
$M_{r}=316.30$
Monoclinic, C2/c
$a=14.940$ (4) A
$b=8.262(2) \AA$
$c=13.236(4) \AA$
$\beta=114.816$ (4) ${ }^{\circ}$
$V=1483.0(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.942, T_{\text {max }}=0.987$
4053 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.125$
$S=1.00$
1541 reflections
107 parameters
H-atom parameters constrained
$D_{x}=1.417 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1065 reflections
$\theta=2.9-26.2^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.30 \times 0.18 \times 0.12 \mathrm{~mm}$

1541 independent reflections
902 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=26.6^{\circ}$
$h=-18 \rightarrow 13$
$k=-10 \rightarrow 8$
$l=-12 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0608 P)^{2}\right. \\
& \quad+0.326 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }= \\
& -0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 \cdots O3	0.82	1.93	$2.645(3)$	145

The H atoms were positioned geometrically $[0.82(\mathrm{OH}), 0.93$ and $0.97(\mathrm{CH})$ and $\left.0.96 \AA\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left[1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})\right.$ for methyl and hydroxyl H atoms].

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Financial support of this work by the Excellent Young Teachers Program of MOE, People's Republic of China, and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars/State Education Ministry, and the Natural Science Foundation of Shandong University for Young Scientists, is gratefully acknowledged.

References

Bruker (1997). SMART (Version 5.6), SAINT (Version 5.06A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Janssen, K. B. M., Laquiere, I., Dehaen, W., Parton, R. F., Vankelecom, I. F. J. \& Jacobs, P. A. (1997). Tetrahedron Asymmetry, 8, 3481-3487.
Marvel, C. S. \& Tarköy, N. (1957). J. Am. Chem. Soc. 79, 6000-6002.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, Y. \& Tang, N. (2004). Huaxuetongbao, 67, w83, 1-4. (In Chinese.)
Wei, P. \& Atwood, D. A. (1997). Inorg. Chem. 36, 4060-4065.

